Strong Converse Inequality for the Bernstein-Durrmeyer Operator

W. Chen and Z. Ditzian*
Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2Gl

AND
K. Ivanov ${ }^{+}$

Institute of Mathematics, Bulgarian Academy of Sciences, Sofia 1090, Bulgaria

Communicated by Vilmos Totik
Received October 28, 1991; accepted in revised form May 19, 1992

An equivalence relation between the rate of approximation of BernsteinDurrmeyer polynomials and an appropriate K-functional is established. The results are stronger than those known for Bernstein polynomials. The advantages of Bernstein-Durrmeyer polynomials, i.e., self-adjointness, communativity, and simple expansion by orthogonal polynomials, are used extensively. © 1993 Academic Press, Inc.

1. Introduction

The Bernstein-Durrmeyer operator (see $[10,3]$) is given by

$$
\begin{equation*}
M_{n}(f, x)=(n+1) \sum_{k=0}^{n} P_{n, k}(x) \int_{0}^{1} P_{n, k}(y) f(y) d y \tag{1.1}
\end{equation*}
$$

where

$$
P_{n, k}(x)=\binom{n}{k} x^{k}(1-x)^{n-k} .
$$

[^0]We prove a strong converse inequality of type A, in the terminology of [8], that is, we show

$$
\begin{equation*}
\left\|M_{n} f-f\right\|_{p} \sim \inf \left(\|f-g\|_{p}+\frac{1}{n}\left\|\left(\varphi^{2} g^{\prime}\right)^{\prime}\right\|_{p}\right) \tag{1.2}
\end{equation*}
$$

for $1 \leqslant p \leqslant \infty$ with $\varphi(x)^{2}=x(1-x)$. For $1<p<\infty$, we prove an analogue of (1.2) for the multivariate Bernstein-Durrmeyer operator introduced by Derriennic [4]. In the cases $p=1$ or $p=\infty$ and the higher dimensional analogue of (1.1), we prove a somewhat weaker result (that is, a strong converse inequality of type B in the terminology of [8]). Several recent articles $[1,2,6]$ proved (among other results) converse inequalities for these operators that are obviously weaker than those in the present paper.

2. Notations and Survey of the Proof

The Multivariate Bernstein-Durrmeyer operator was introduced by Derriennic [4] as

$$
\begin{equation*}
M_{n}(f, x)=\frac{(n+d)!}{n!} \sum_{(\beta / n) \in T} P_{n, \beta}(x) \int_{T} P_{n, \beta}(u) f(u) d u \tag{2.1}
\end{equation*}
$$

where $x, u \in R^{d}\left(x=\left(x_{1}, \ldots, x_{d}\right)\right), \beta=\left(k_{1}, \ldots, k_{d}\right)$ with k_{i} integers, and $T=\left\{u: 0 \leqslant u_{i}, \sum_{i=1}^{d} u_{i} \leqslant 1\right\}$. The polynomial $P_{n, \beta}(u)$ is given by

$$
\begin{equation*}
P_{n, k_{1}, \ldots, k_{d}}\left(u_{1}, \ldots, u_{d}\right) \equiv P_{n, \beta}(u)=\frac{n!}{\beta!(n-|\beta|)!} u^{\beta}(1-|u|)^{n-|\beta|}, \tag{2.2}
\end{equation*}
$$

where $\beta!=k_{1}!\cdots k_{d}!, u^{\beta}=u_{1}^{k_{1}} \cdots u_{d}^{k_{d}}\left(u_{i}^{k_{i}}=1\right.$ if $\left.k_{i}=u_{i}=0\right),|u|=\sum_{i=1}^{d} u_{i}$ and $|\beta|=\sum_{i=1}^{d} k_{i}$.

Many properties were proven about the operators $M_{n} f$ which are quoted as we use them. We define, following Derriennic [6],

$$
\begin{equation*}
P(D)=\sum_{i=1}^{d} \frac{\partial}{\partial x_{i}} x_{i}(1-|x|) \frac{\partial}{\partial x_{i}}+\sum_{i<j}\left(\frac{\partial}{\partial x_{i}}-\frac{\partial}{\partial x_{j}}\right) x_{i} x_{j}\left(\frac{\partial}{\partial x_{i}}-\frac{\partial}{\partial x_{j}}\right) \tag{2.3}
\end{equation*}
$$

and recall that for $f \in C^{2}(T)$, it was proved in [5] that

$$
\begin{equation*}
n\left\{M_{n}(f, x)-f(x)\right\} \rightarrow P(D) f(x) \tag{2.4}
\end{equation*}
$$

The operator $P(D)$ given by (2.3) and introduced in [6] may take other forms, as can be seen in $[4,2]$.

The main result of our paper is the equivalence

$$
\begin{equation*}
\left\|M_{n} f-f\right\|_{p} \sim \inf \left(\|f-g\|_{p}+\frac{1}{n}\|P(D) g\|_{p}\right) \tag{2.5}
\end{equation*}
$$

which is proved in Theorem 6.3 for all d when $1<p<\infty$ and for $d=1,2$, and 3 when $p=1$ and $p=\infty$. For $p=1$ and $p=\infty$ and $d>3$, a weaker result than (2.5) is valid. The proof follows from a Bernstein-type inequality

$$
\begin{equation*}
\left\|P(D) M_{n}^{2} f\right\|_{p} \leqslant d n\|f\|_{p}, \quad 1 \leqslant p \leqslant \infty \tag{2.6}
\end{equation*}
$$

(Theorem 3.2), and an improved Voronovskaja-type result

$$
\begin{align*}
& \left\|M_{n} f-f-\frac{\alpha_{n}(d)}{2} P(D)\left[M_{n} f+f\right]\right\|_{p} \\
& \quad \leqslant\left(\frac{1}{4} \alpha_{n}(d)^{2}+\frac{1}{2} \frac{1}{(n+1)^{2}}\right)\left\|P(D)^{2} f\right\|_{p} \tag{2.7}
\end{align*}
$$

(Theorem 4.1). It is the interplay between the exact constants in (2.6) and (2.7) that implies (2.5) for $d=1,2$, and 3, and the estimate (2.6) depends on $d\left(\alpha_{n}(d)\right.$ is asymptotically independent of $\left.d\right)$. For $1<p<\infty$ we use the L_{2} estimate

$$
\begin{equation*}
\left\|P(D) M_{n}^{\prime} f\right\|_{2} \leqslant \frac{n}{\sqrt{r}}\|f\|_{2} \tag{2.8}
\end{equation*}
$$

(Theorem 5.1) and the Riesz-Thorin interpolation theorem to obtain

$$
\begin{equation*}
\left\|P(D) M_{n}^{r} f\right\|_{p}<\varepsilon(r) n\|f\|_{p}, \quad 1<p<\infty \tag{2.9}
\end{equation*}
$$

with $\varepsilon(r)=o(1)$ as $r \rightarrow \infty$. The inequality (2.9) together with (2.7) is sufficient to prove (2.5) for $1<p<\infty$ and all dimensions d. We conjecture that (2.9) and hence (2.5) is valid for $p=1$ and $p=\infty$ in all dimensions (see Remark 6.4).

We note that for $d=1$, when $p=1$ or $p=\infty$ we cannot replace the K-functional on the right hand side of (2.5) with $\omega_{\varphi}^{2}(f, t)_{p}$ (where $\varphi^{2}=x(1-x)$). This follows since the K-functional on the right hand side of (1.2) and $\omega_{\varphi}^{2}(f, t)_{p}$ are not equivalent for $p=1$ and $p=\infty$ while (1.2) holds. For $1<p<\infty$ the above expressions are equivalent. Hence, even for higher dimensions an equivalence result with an expression generalizing ω_{φ}^{2} will falter for $p=1$ and $p=\infty$. We trust that an equivalence of sorts will be proved for $1<p<\infty$, but that is beyond the scope of this paper and our knowledge. As an equivalence between the K-functional above and
$\omega_{s}^{2}(f, t)_{p}$ (see [9, Chap. 12]) is not true for all p and as the rate of convergence is equivalent to the above K-functional, it is that K-functional that is the appropriate measure for this paper.

$$
\text { 3. Estimate of }\left\|P(D) M_{n} f\right\|_{p}
$$

It follows from Derriennic's research [6], detailed only for $d=1$ and $d=2$, that

$$
\begin{equation*}
\left\|P(D)^{r} M_{n} f\right\|_{p} \leqslant C n^{r}\|f\|_{p} \tag{3.1}
\end{equation*}
$$

We need for $r=1$ the following better estimate on the constant C.
Theorem 3.1. For $f \in L_{p}(T)$, where T is the d-dimensional simplex given in Section 2, and for $P(D)$ given by (2.3), we have

$$
\begin{equation*}
\left\|P(D) M_{n} f\right\|_{p} \leqslant 2 d n\|f\|_{p} \tag{3.2}
\end{equation*}
$$

Proof. First we show that it is sufficient to prove (3.2) for $p=\infty$ (or $p=1$). Assume (3.2) for $p=\infty$. We take $g \in C^{2}(T)$ and $f \in L_{1}(T)$ and then use [2, Lemma 2.5]

$$
\begin{equation*}
P(D) M_{n} g=M_{n} P(D) g, \quad g \in C^{2}(T) \tag{3.3}
\end{equation*}
$$

We recall from [4] the self-adjointness of M_{n} and $P(D)$ with respect to the scalar product $\langle f, g\rangle=\int_{T} f(u) g(u) d u$ to obtain

$$
\begin{align*}
\left|\left\langle P(D) M_{n} f, g\right\rangle\right| & =\left|\left\langle f, P(D) M_{n} g\right\rangle\right| \leqslant\|f\|_{L_{1}(T)}\left\|P(D) M_{n} g\right\|_{L_{x}(T)} \\
& \leqslant 2 d n\|f\|_{L_{1}(T)}\|g\|_{L_{x}(T)} . \tag{3.4}
\end{align*}
$$

As (3.4) is valid for all $g \in C^{2}(T)$, we have (3.2) for $p=1$. The inequality (3.2) for $p=\infty$ and $p=1$ implies now (3.2) for $1<p<\infty$ via the Riesz-Thorin interpolation theorem.

We observe that

$$
\begin{equation*}
x_{i}(1-|x|) \frac{\partial}{\partial x_{i}} P_{n, \beta}(x)=\left(k_{i}(1-|x|)-(n-|\beta|) x_{i}\right) P_{n, \beta}(x), \tag{3.5}
\end{equation*}
$$

and hence

$$
\begin{align*}
& \frac{\partial}{\partial x_{i}} x_{i}(1-|x|) \frac{\partial}{\partial x_{i}} P_{n, \beta}(x) \\
& \quad=\frac{\left(k_{i}(1-|x|)-(n-|\beta|) x_{i}\right)^{2}}{x_{i}(1-|x|)} P_{n, \beta}(x)-\left(n-|\beta|+k_{i}\right) P_{n, \beta}(x) . \tag{3.6}
\end{align*}
$$

Similarly,

$$
\begin{align*}
\left(\frac{\partial}{\partial x_{i}}\right. & \left.-\frac{\partial}{\partial x_{j}}\right) x_{i} x_{j}\left(\frac{\partial}{\partial x_{i}}-\frac{\partial}{\partial x_{j}}\right) P_{n, \beta}(x) \\
& =\frac{\left(k_{i} x_{i}-k_{j} x_{i}\right)^{2}}{x_{i} x_{j}} P_{n, \beta}(x)-\left(k_{i}+k_{j}\right) P_{n, \beta}(x) . \tag{3.7}
\end{align*}
$$

Recalling $M_{n}(1, x)=1$, we have

$$
\begin{align*}
0= & P(D) M_{n}(1, x) \\
= & \sum_{(\beta / n) \in T}\left(\left\{\sum_{i=1}^{d} \frac{\left(k_{i}(1-|x|)-(n-|\beta|) x_{i}\right)^{2}}{x_{i}(1-|x|)}\right.\right. \\
& \left.\left.+\sum_{i<j} \frac{\left(k_{i} x_{j}-k_{j} x_{i}\right)^{2}}{x_{i} x_{j}}\right\}-n d\right) P_{n, \beta}(x) \\
\equiv & \sum_{(\beta, n) \in T}\left(I_{n, \beta}(x)-n d\right) P_{n, \beta}(x), \tag{3.8}
\end{align*}
$$

which implies

$$
\sum_{(\beta / n) \in T} I_{n, \beta}(x) P_{n, \beta}(x)=n d \sum_{(\beta / n) \in T} P_{n, \beta}(x)=n d .
$$

We now estimate

$$
\begin{equation*}
b_{n, \beta} \equiv\left|\frac{(n+d)!}{n!} \int_{T} f(x) P_{n, \beta}(x) d x\right| \leqslant\|f\|_{L_{x}(T)} \tag{3.9}
\end{equation*}
$$

and use $I_{n, \beta}(x) \geqslant 0$ to obtain

$$
\begin{aligned}
\left|P(D) M_{n}(f, x)\right| & \leqslant \sum_{(\beta, n) \in T}\left(I_{n, \beta}(x)+n d\right) P_{n, \beta}(x)\|f\|_{L_{x}(T)} \\
& \leqslant 2 n d\|f\|_{L_{x}(T)} .
\end{aligned}
$$

We are also able to prove the following useful estimate.
Theorem 3.2. Under the assumptions of Theorem 3.1, we have

$$
\begin{equation*}
\left\|P(D) M_{n}^{2} f\right\|_{\rho} \leqslant d n\|f\|_{p} \tag{3.10}
\end{equation*}
$$

Proof. Following the proof of Theorem 3.1, we only have to consider $p=\infty$. We can write

$$
\begin{aligned}
\left|P(D) M_{n}^{2}(f, x)\right|= & \left|M_{n} P(D) M_{n}(f, x)\right| \\
\leqslant & \left(\frac{(n+d)!}{n!}\right)^{2} \sum_{(\gamma / n) \in T} P_{n, \gamma}(x) \\
& \times \sum_{(\beta / n) \in T}\left|\int_{T} P_{n, \gamma}(u) P(D) P_{n, \beta}(u) d u\right| \\
& \times \int_{T} P_{n, \beta}(v)|f(v)| d v \\
\leqslant & \frac{(n+d)!}{n!}\|f\|_{L_{x}(T)} \sum_{(\gamma / n) \in T} P_{n, \gamma}(x) \\
& \times \sum_{(\beta / n) \in T}\left|\int_{T} P_{n, \gamma}(u) P(D) P_{n, \beta}(u) d u\right| .
\end{aligned}
$$

We show

$$
\begin{equation*}
\frac{(n+d)!}{n!} \sum_{(\beta / n) \in T}\left|\int_{T} P_{n, \gamma}(u) P(D) P_{n, \beta}(u) d u\right| \leqslant n d \tag{3.11}
\end{equation*}
$$

which implies (3.10) for $p=\infty$ and hence for $1 \leqslant p \leqslant \infty$. To prove (3.11), we write

$$
\begin{aligned}
J_{n, \gamma} & \equiv \frac{(n+d)!}{n!} \sum_{(\beta / n) \in T}\left|\int_{T} P_{n, \gamma}(u) P(D) P_{n, \beta}(u) d u\right| \\
& =\frac{(n+d)!}{n!} \sum_{(\beta ; n) \in T}\left|\sum_{i \leqslant j} \int_{T}\left(L_{i, j}(D) P_{n, \gamma}(u)\right)\left(L_{i, j}(D) P_{n, \beta}(u)\right) d u\right|,
\end{aligned}
$$

where

$$
L_{i, i}(D)=\sqrt{u_{i}(1-|u|)} \frac{\partial}{\partial u_{i}}
$$

and

$$
\begin{equation*}
L_{i, j}(D)=\sqrt{u_{i} u_{j}}\left(\frac{\partial}{\partial u_{i}}-\frac{\partial}{\partial u_{j}}\right) \quad \text { for } \quad i \neq j . \tag{3.12}
\end{equation*}
$$

The straightforward computation of $L_{i, j}(D) P_{n, \eta}(u)$ (where $\eta=\beta$ or $\eta=\gamma$) leads now to

$$
\begin{aligned}
J_{n, \gamma} \leqslant & \frac{(n+d)!}{n!} \\
& \times \sum_{(\beta, n) \in T} \int_{T}\left\{\sum_{i=1}^{d} \frac{\left.\left|k_{i}(1-|u|)-(n-|\beta|) u_{i}\right| \mid l_{i}(1-|u|)-(n-|\gamma|) u_{i}\right) \mid}{u_{i}(1-|u|)}\right. \\
& \left.+\sum_{i<j} \frac{\left|k_{i} u_{j}-k_{j} u_{i}\right|\left|l_{i} u_{j}-l_{i} u_{i}\right|}{u_{i} u_{j}}\right\} P_{n, \gamma}(u) P_{n, \beta}(u) d u .
\end{aligned}
$$

Recalling $I_{n, \eta}(u)$ (with $\eta=\beta$ and $\eta=\gamma$) given in (3.8), we use the CauchySchwartz inequality to obtain

$$
\begin{aligned}
J_{n, \gamma} \leqslant & \frac{(n+d)!}{n!} \sum_{(\beta, n) \in T} \int_{T} I_{n, \beta}(u)^{1 / 2} I_{n, \gamma}(u)^{1 / 2} P_{n, \gamma}(u) P_{n, \beta}(u) d u \\
\leqslant & \left\{\frac{(n+d)!}{n!} \sum_{(\beta, n) \in T} \int_{T} I_{n, \beta}(u) P_{n, \gamma}(u) P_{n, \beta}(u) d u\right\}^{1 / 2} \\
& \times\left\{\frac{(n+d)!}{n!} \sum_{(\beta, n) \in T} \int_{T} I_{n, \gamma}(u) P_{n, \gamma}(u) P_{n, \beta}(u) d u\right\}^{1 / 2} \\
\equiv & J_{n, \gamma}^{*} \times J_{n, \gamma}^{* *} .
\end{aligned}
$$

The estimate $J_{n, \gamma}^{*} \leqslant(n d)^{1 / 2}$ follows from

$$
\sum_{(\beta, n) \in T} I_{n, \beta}(u) P_{n, \beta}(u)=n d,
$$

which follows from (3.8). To estimate $J_{n . \gamma}^{* *}$, we write, using (3.5),

$$
\begin{aligned}
\int_{T} \frac{\left(l_{i}(1-|u|)-(n-|\gamma|) u_{i}\right)^{2}}{u_{i}(1-|u|)} P_{n, \gamma}(u) d u= & \int_{T}\left(l_{i}(1-|u|)-(n-|\gamma|) u_{i}\right) \\
& \times \frac{\partial}{\partial u_{i}} P_{n, \gamma}(u) d u \\
= & \frac{n!}{(n+d)!}\left(n-|\gamma|+l_{i}\right)
\end{aligned}
$$

and

$$
\int_{T} \frac{\left(l_{i} u_{j}-l_{j} u_{i}\right)^{2}}{u_{i} u_{j}} P_{n . \gamma}(u) d u=\frac{n!}{(n+d)!}\left(l_{i}+l_{j}\right)
$$

which implies $J_{n, \gamma}^{* *} \leqslant(n d)^{1 / 2}$.

4. Voronovskaja-Type Estimates

Derriennic [5] proved the Voronovskaja-type estimate (2.4). For the converse inequality of the present paper, we need the following stronger result.

Theorem 4.1. Suppose $f \in C^{4}(T), M_{n} f$ is given by (2.1) and $P(D)$ is given by (2.3). Then we have for $n>1$

$$
\begin{align*}
& \left\|M_{n} f-f-\frac{\alpha_{n}(d)}{2} P(D)\left[M_{n} f+f\right]\right\|_{p} \\
& \quad \leqslant\left(\frac{1}{4} \alpha_{n}(d)^{2}+\frac{1}{2} \frac{1}{(n+1)^{3}}\right)\left\|P(D)^{2} f\right\|_{p} \tag{4.1}
\end{align*}
$$

where

$$
\alpha_{n}(d) \equiv \sum_{k=n+1}^{\infty} \frac{1}{k(k+d)}=\frac{1}{d}\left[\frac{1}{n+1}+\cdots+\frac{1}{n+d}\right] .
$$

Proof. Using Corollary 2.4 of [2],

$$
M_{n} f-f=\sum_{k=n+1}^{\infty} \frac{1}{k(k+d)} P(D) M_{k} f,
$$

we write

$$
\begin{aligned}
I(n) \equiv & \left\|M_{n} f-f-\frac{\alpha_{n}(d)}{2} P(D)\left(f+M_{n} f\right)\right\| \\
= & \frac{1}{2} \| \sum_{k=n+1}^{\infty} \frac{1}{k(k+d)} P(D)\left(M_{k} f-f\right) \\
& +\sum_{k=n+1}^{\infty} \frac{1}{k(k+d)} P(D)\left(M_{k} f-M_{n} f\right) \| \\
= & \frac{1}{2} \| \sum_{k=n+1}^{\infty} \frac{1}{k(k+d)} \sum_{j=k+1}^{\infty} \frac{1}{j(j+d)} P(D)^{2} M_{j} f \\
& -\sum_{k=n+1}^{\infty} \frac{1}{k(k+d)} \sum_{j=n+1}^{k} \frac{1}{j(j+d)} P(D)^{2} M_{j} f \| \\
= & \frac{1}{2} \| \sum_{j=n+2}^{\infty} \frac{P(D)^{2} M_{j} f}{j(j+d)} \sum_{k=n+1}^{j-1} \frac{1}{k(k+d)} \\
& \left.-\sum_{j=n+1}^{\infty} \frac{P(D)^{2} M_{j} f}{j(j+d)} \sum_{k=j}^{\infty} \frac{1}{k(k+d)} \right\rvert\, \\
\leqslant & \left.\left.\frac{1}{2} \sup _{j}\left\|P(D)^{2} M_{i} f\right\| \sum_{j=n+1}^{\infty} \frac{1}{j(j+d)}\right|_{k=n+1} ^{j-1} \frac{1}{k(k+d)}-\sum_{k=j}^{\infty} \frac{1}{k(k+d)} \right\rvert\,
\end{aligned}
$$

(with the understanding $\sum_{k=n+1}^{n} \cdots=0$). Using Lemma 2.5 of [2], we have for $f \in C^{4}(T)$

$$
P(D)^{2} M_{j} f=M_{j} P(D)^{2} f,
$$

and hence,

$$
\left\|P(D)^{2} M_{j} f\right\| \leqslant\left\|P(D)^{2} f\right\|
$$

We now have

$$
\begin{aligned}
I(n) & \leqslant \frac{1}{2}\left\|P(D)^{2} f\right\| \sum_{j=n+1}^{\infty} \frac{1}{j(j+d)}\left|\alpha_{n}(d)-2 \alpha_{j-1}(d)\right| \\
& \equiv \frac{1}{2}\left\|P(D)^{2} f\right\| J(n) .
\end{aligned}
$$

To estimate $J(n)$, we define j_{0} by

$$
j_{0}=\max \left\{j: 2 \alpha_{j-1}(d)-\alpha_{n}(d)>0\right\},
$$

and as $\alpha_{j}(d)$ is a decreasing sequence in j, we have

$$
\begin{aligned}
J(n) & =\sum_{j=n+1}^{j_{0}} \frac{1}{j(j+d)}\left(2 \alpha_{j-1}(d)-\alpha_{n}(d)\right)+\sum_{j=10+1}^{\infty} \frac{1}{j(j+d)}\left(\alpha_{n}(d)-2 \alpha_{j-1}(d)\right) \\
& \equiv J_{1}(n)+J_{2}(n)
\end{aligned}
$$

To estimate $J_{1}(n)$, we write

$$
\begin{aligned}
J_{1}(n)= & \sum_{j=n+1}^{j_{0}}\left(\alpha_{j-1}(d)-\alpha_{j}(d)\right)\left(\alpha_{j-1}(d)+\alpha_{j}(d)\right) \\
& +\sum_{j=n+1}^{j_{0}} \frac{1}{j^{2}(j+d)^{2}}-\alpha_{n}(d)\left(\alpha_{n}(d)-\alpha_{j 0}(d)\right) \\
\leqslant & \alpha_{n}(d)^{2}-\alpha_{j 0}(d)^{2}-\frac{1}{2} \alpha_{n}(d)^{2}+\frac{2 / 3}{(n+1)^{3}}
\end{aligned}
$$

as the definition of j_{0} implies $\alpha_{n}(d)-\alpha_{i 0}(d) \geqslant \frac{1}{2} \alpha_{n}(d)$ and

$$
\sum_{i=n+1}^{j_{0}} \frac{1}{j^{2}(j+d)^{2}} \leqslant \sum_{i=n+1}^{\infty} \frac{1}{j^{2}(j+d)^{2}} \leqslant \frac{2 / 3}{(n+1)^{3}} \quad \text { for } n \geqslant 1 .
$$

To estimate $J_{2}(n)$, we write

$$
\begin{aligned}
J_{2}(n) & \leqslant \alpha_{n}(d) \alpha_{j 0}(d)-\sum_{j=j 0+1}^{\infty}\left(\alpha_{j-1}(d)-\alpha_{j}(d)\right)\left(\alpha_{j-1}(d)+\alpha_{j}(d)\right) \\
& =\alpha_{11}(d) \alpha_{j_{0}}(d)-\alpha_{j 0}(d)^{2} .
\end{aligned}
$$

Combining the estimates for $J_{1}(n)$ and $J_{2}(n)$, and as $j_{0} \geqslant 2 n+1$, we have

$$
\begin{aligned}
J(n) & \leqslant \frac{1}{2} \alpha_{n}(d)^{2}+\frac{2 / 3}{(n+1)^{3}}+\alpha_{j_{0}}(d)\left(\alpha_{n}(d)-2 \alpha_{j_{0}}(d)\right) \\
& \leqslant \frac{1}{2} \alpha_{n}(d)^{2}+\frac{2 / 3}{(n+1)^{3}}+2 \alpha_{j_{0}}(d)\left(\alpha_{j_{0}-1}(d)-\alpha_{j_{0}}(d)\right) \\
& \leqslant \frac{1}{2} \alpha_{n}(d)^{2}+\frac{2 / 3}{(n+1)^{3}}+2 \frac{1}{(2 n+2)^{2}} \frac{1}{2 n+1} \leqslant \frac{1}{2} \alpha_{n}(d)^{2}+\frac{1}{(n+1)^{3}},
\end{aligned}
$$

which combined with the estimated of $I(n)$ concludes the proof.
Remark 4.2. For most purposes, the slightly easier to prove estimate

$$
\begin{equation*}
\left\|M_{n} f-f-\alpha_{n}(d) P(D) f\right\|_{p} \leqslant \frac{1}{2 n^{2}}\left\|P(D)^{2} f\right\|_{p} \tag{4.2}
\end{equation*}
$$

is sufficient. In some cases, however, (4.1) yields results which are qualitatively better.

In one result (Theorem 7.2), we need the following extension of (4.2).
Theorem 4.3. Suppose $f \in C^{2 r+2}(T)$ and $M_{n}, P(D), T$, and d are as given in Section 2. Then

$$
\begin{equation*}
\left\|\left(M_{n}-I\right)^{r} f-x_{n}(d)^{r} P(D)^{r} f\right\|_{p} \leqslant \frac{r / 2}{n^{r+1}}\left\|P(D)^{r+1} f\right\|_{p} \tag{4.3}
\end{equation*}
$$

Proof. We first observe

$$
\begin{aligned}
\left\|M_{n} f-f-\alpha_{n}(d) P(D) f\right\|_{n} & =\left\|\sum_{k=n+1}^{\infty} \frac{1}{k(k+d)} P(D)\left(M_{k} f-f\right)\right\|_{p} \\
& \leqslant\left\|_{k=n+1}^{\infty} \frac{1}{k(k+d)} \sum_{j=k+1}^{\infty} \frac{1}{j(j+d)} P(D)^{2} M_{j} f\right\|_{p} \\
& \leqslant \sum_{k=n+1}^{\infty} \frac{1}{k(k+1)} \sum_{j=k+1}^{\infty} \frac{1}{j(j+1)}\left\|P(D)^{2} f\right\|_{p} \\
& \leqslant \sum_{k=n+1}^{\infty} \frac{1}{k(k+1)^{2}}\left\|P(D)^{2} f\right\|_{p} \\
& \leqslant \frac{1}{2} \frac{1}{n^{2}}\left\|P(D)^{2} f\right\|_{p} .
\end{aligned}
$$

We prove (4.3) by induction. We assume (4.3) for $r=l$ and write

$$
\left\|\left(M_{n}-I\right)^{l+1} f-\alpha_{n}(d)^{\prime} P(D)^{\prime}\left(M_{n}-I\right) f\right\| \leqslant \frac{l / 2}{n^{l+1}}\left\|P(D)^{l+1}\left(M_{n}-I\right) f\right\|
$$

Since we have

$$
\left\|P(D)^{l+1}\left(M_{n}-I\right) f\right\|_{p}=\left\|\left(M_{n}-I\right) P(D)^{l+1} f\right\|_{p} \leqslant \frac{1}{n}\left\|P(D)^{l+2} f\right\|_{p}
$$

and since the induction hypothesis for $l=1$ implies

$$
\left\|\alpha_{n}(d)^{l}\left(M_{n}-I\right) P(D)^{l} f-\alpha_{n}(d)^{l+1} P(D)^{l+1} f\right\|_{p} \leqslant \frac{\alpha_{n}(d)^{\prime}}{2 n^{2}}\left\|P(D)^{l+2} f\right\|_{p}
$$

the result follows.

5. Estimate of $\left\|P(D) M_{n}^{r} f\right\|_{2}$ and Its Consequence

In this section, we will give an estimate of $\left\|P(D) M_{n} f\right\|_{L_{2}(T)}$ and of $\left\|P(D) M_{n}^{r} f\right\|_{L_{2}(T)}$ which will prove useful also for other $L_{p}(T)$.

Theorem 5.1. Suppose $f \in L_{2}(T), M_{n} f, T$ and $P(D)$ are as defined in Section 2. Then we have $r=1,2, \ldots$,

$$
\begin{equation*}
\left\|P(D) M_{n}^{r} f\right\|_{L_{2}(T)} \leqslant \frac{n}{\sqrt{r}}\|f\|_{L_{2}(T)} \tag{5.1}
\end{equation*}
$$

For the proof we need the following computational lemma.
Lemma 5.2. For $\lambda_{n, k}$ given by

$$
\begin{equation*}
\lambda_{n, k}=\frac{(n+d)!n!}{(n+d+k)!(n-k)!}, \quad 0 \leqslant k \leqslant n \tag{5.2}
\end{equation*}
$$

we have

$$
\begin{equation*}
k(k+d) \lambda_{n, k}^{r} \leqslant n / \sqrt{r}, \quad 0 \leqslant k \leqslant n . \tag{5.3}
\end{equation*}
$$

Proof. Since $0 \leqslant \lambda_{n, k} \leqslant 1$, (5.3) follows immediately when $k(k+d) \leqslant$ n / \sqrt{r}. To prove (5.3) for k satisfying $k(k+d)>n / \sqrt{r}$, we estimate $\lambda_{n, k}^{j}$ using

$$
\begin{aligned}
\lambda_{n, k}^{j} & =\left(\frac{(n+d)!n!}{(n+d+k)!(n-k)!}\right)^{\prime}=\left(\prod_{i=1}^{k} \frac{n-k+i}{n+d+i}\right)^{j}=\prod_{i=1}^{k}\left(1-\frac{d+k}{n+d+i}\right)^{j} \\
& \leqslant\left(1-\frac{d+k}{n+d+k}\right)^{k j}=\frac{1}{\left(1+\frac{d+k}{n}\right)^{k j}} \leqslant \frac{1}{1+k(k+d) j n^{-1}}
\end{aligned}
$$

For $j=1$, we have

$$
\lambda_{n, k} \leqslant \frac{n}{n+k(k+d)} \leqslant \frac{n}{k(k+d)} .
$$

For $k(k+d) \geqslant n / \sqrt{r}$ and $j=r-1$, we have

$$
\lambda_{n, k}^{r-1} \leqslant \frac{1}{1+k(k+d)(r-1) n^{-1}} \leqslant \frac{1}{1+(r-1) / \sqrt{r}} \leqslant \frac{1}{\sqrt{r}},
$$

and hence,

$$
k(k+d) \lambda_{n, k}^{r} \leqslant \frac{k(k+d)}{\sqrt{r}} \frac{n}{k(k+d)} \leqslant \frac{n}{\sqrt{r}} .
$$

Proof of Theorem 5.1. The eigenspaces of the self adjoint operators $P(D) f$ and $M_{n} f$ are the same (see B, (2.5) of [2], and Lemma 2.2 of [2]; see also [4]) and f can be expanded by

$$
f=\sum_{k=0}^{\infty} P_{k} f
$$

where

$$
\begin{equation*}
M_{n} P_{k} f=\lambda_{n, k} P_{k} f \quad \text { and } \quad P(D) P_{k} f=-k(k+d) P_{k} f \tag{5.4}
\end{equation*}
$$

with $\lambda_{n, k}$ given by (5.2) for $k \leqslant n$ and $\lambda_{n, k}=0, k>n$. We now have, using Bessel inequality and Parseval formula,

$$
\begin{aligned}
\left\|P(D) M_{n}^{r} f\right\|_{L_{2}(T)} & =\left\|\sum_{k=1}^{n} k(k+d) \lambda_{n, k}^{r} P_{k} f\right\|_{L_{2}(T)} \\
& =\left(\sum_{k=1}^{n}\left(k(k+d) \lambda_{n, k}^{r}\right)^{2}\left\|P_{k} f\right\|_{L_{2}(T)}^{2}\right)^{1 / 2} \\
& \leqslant \max _{k}\left(k(k+d) \hat{\lambda}_{n, k}^{r}\right)\left(\sum_{k=1}^{n}\left\|P_{k} f\right\|_{L_{2}(T)}^{2}\right)^{1 / 2} \\
& \leqslant \frac{n}{\sqrt{r}}\|f\|_{L_{2}(T)} .
\end{aligned}
$$

The following estimate for $\left\|P(D) M_{n} f\right\|_{p}$ can now be derived.

Corollary 5.3. For $1<p<\infty$ and $f \in L_{p}(T)$ and any $A>0$, there exists $r, r=r(A, p, d)$, such that

$$
\begin{equation*}
\left\|P(D) M_{n}^{r} f\right\|_{L_{p}(T)} \leqslant A n\|f\|_{L_{p}(T)} . \tag{5.5}
\end{equation*}
$$

Proof. We recall that Theorem 3.1 implies

$$
\begin{equation*}
\left\|P(D) M_{n}^{r} f\right\|_{L_{p}(T)} \leqslant 2 d n\|f\|_{L_{p}(T)} . \tag{5.6}
\end{equation*}
$$

We now use the Riesz-Thorin interpolation theorem with (5.6) for $p=\infty$ (or $p=1$) and (5.1) to obtain (5.5) for $2 \leqslant p<\infty$ (or $1<p \leqslant 2$).

6. Strong Converse Inequalities

In this section, we prove converse inequalities for the BernsteinDurrmeyer operator. We duplicate some arguments from [8] for the sake of completeness. We define the K-functional

$$
\begin{equation*}
K_{r}\left(f, t^{r}\right)_{p}=\inf _{g \in C^{2}(T)}\left(\|f-g\|_{p}+t^{r}\left\|P(D)^{r} g\right\|_{p}\right) . \tag{6.1}
\end{equation*}
$$

We note that in this section we are dealing with $r=1$. We recall that

$$
\begin{equation*}
A_{n} \sim B_{n} \quad \text { iff } \quad C^{-1} A_{n} \leqslant B_{n} \leqslant C A_{n} . \tag{6.2}
\end{equation*}
$$

The converse result is given in the following theorem.
Theorem 6.1. Suppose $P(D), M_{n} f$ and T are those given in Section 2 and $K_{1}(f, t)_{p} \equiv K(f, t)_{p}$ is given by (6.1). Then we have

$$
\begin{equation*}
\left\|M_{n} f-f\right\|_{p}+\left\|M_{d n} f-f\right\|_{p} \sim K(f, 1 / n)_{p}, \quad l \leqslant p \leqslant \infty, \tag{6.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|M_{n} f-f\right\|_{p} \sim K(f, 1 / n)_{p}, \quad 1<p<\infty . \tag{6.4}
\end{equation*}
$$

Remark 6.2. In the terminology of [8] the results (6.3) and (6.4) are strong converse inequalities of type B and A, respectively. Actually, for $d=1$, (6.3) yields

$$
\left\|M_{n} f-f\right\|_{\rho} \sim K(f, 1 / n)_{p} \quad \text { for } \quad 1 \leqslant p \leqslant \infty,
$$

and this type of equivalence is shown for $d=2$ and $d=3$ as well (see

Theorem 6.3). For $d>1$, (6.3) has an advantage over (6.4) only for $p=1$ and $p=\infty$.

Proof. It was shown in (3.2) of [2] that

$$
\left\|f-M_{n} f\right\|_{p} \leqslant 2 K\left(f, n^{-1}\right)_{p}
$$

and hence, we need only estimate $K(f, 1 / n)_{p}$ by $\left\|M_{n} f-f\right\|_{p}+\left\|M_{n d} f-f\right\|_{p}$ or by $\left\|M_{n} f-f\right\|$ to prove (6.3) and (6.4), respectively. (Of course the conditions are not the same.) We do so by constructing $g \in C^{2}(T)$ such that both $\|f-g\|$ and $(1 / n)\|P(D) g\|$ will satisfy the appropriate estimate. As the K-functional is given as an infimum on all $g \in C^{2}(T)$, we will have our result. To prove (6.3), we choose

$$
g=\frac{1}{2}\left(M_{n d} M_{n}^{2} f+M_{n}^{2} f\right)
$$

Using the commutativity relation $M_{n} M_{m}=M_{m} M_{n}$, we have

$$
\begin{aligned}
\left\|f-\frac{1}{2} M_{n d} M_{n}^{2} f-\frac{1}{2} M_{n}^{2} f\right\|_{p} & \leqslant \frac{1}{2}\left\|M_{n d} M_{n}^{2} f-f\right\|_{p}+\frac{1}{2}\left\|M_{n}^{2} f-f\right\|_{p} \\
& \leqslant \frac{1}{2}\left\|M_{n d} f-f\right\|_{p}+2\left\|M_{n} f-f\right\|_{p}
\end{aligned}
$$

To estimate $P(D) g$, we use (4.1) but with nd rather than n, that is, we write

$$
\begin{align*}
& \left\|M_{n d} \psi-\psi-\frac{\alpha_{d n}(d)}{2} P(D)\left(M_{n d} \psi+\psi\right)\right\|_{p} \\
& \quad \leqslant\left(\frac{1}{4} \alpha_{d n}(d)^{2}+\frac{1}{2(d n+1)^{3}}\right)\left\|P(D)^{2} \psi\right\|_{p} \tag{6.5}
\end{align*}
$$

with $\psi=M_{n}^{2} f$. We can write using Theorem 3.1

$$
\begin{aligned}
\left\|P(D)^{2} M_{n}^{2} f\right\|_{p} \leqslant & 2 n d\left\|P(D) M_{n} f\right\|_{p} \\
\leqslant & 2 n d \| P(D)\left(\frac{1}{2}\left(M_{n d} M_{n}^{2} f+M_{n}^{2} f\right) \|_{p}\right. \\
& +n d\left[\left\|P(D)\left(M_{d n} M_{n}^{2} f-M_{n} f\right)\right\|_{p}\right. \\
& \left.+\left\|P(D)\left(M_{n}-I\right) M_{n} f\right\|_{p}\right] \\
\leqslant & 2 n d\|P(D) g\|_{p}+(2 n d)^{2}\left\|M_{n} f-f\right\|_{p} \\
& +2 n^{2} d^{2}\left\|M_{d n} f-f\right\|_{p} .
\end{aligned}
$$

(Recall $P(D)\left(M_{d n} M_{n}^{2} f-M_{n} f\right)=P(D) M_{n}\left(M_{n} f-f\right)+P(D) M_{n}^{2}\left(M_{d n} f-f\right)$.) We now complete the proof using (6.5) with $\psi=M_{n}^{2} f$ and the above to write

$$
\begin{aligned}
\alpha_{d n}(d)\|P(D) g\|_{p} \leqslant & \left\|M_{d n} M_{n}^{2} f-M_{n}^{2} f\right\|_{p}+\left(\frac{1}{4} \alpha_{n d}(d)^{2}+\frac{1}{2(d n+1)^{3}}\right) \\
& \times\left\|P(D)^{2} M_{n}^{2} f\right\|_{p} \\
\leqslant & 2\left\|M_{d n} f-f\right\|_{p}+2\left\|M_{n} f-f\right\|_{p}+\left(\frac{1}{2} \alpha_{d n}(d)+\frac{1}{(d n+1)^{2}}\right) \\
& \times\|P(D) g\|_{p} .
\end{aligned}
$$

Since $1 / d(n+1) \leqslant \alpha_{d n}(d) \leqslant 1 /(d n+1)$, we have

$$
\frac{1}{n}\|P(D) g\|_{g} \leqslant 8 d\left(2\left\|M_{d n} f-f\right\|_{p}+2\left\|M_{n} f-f\right\|_{p}\right), \quad \text { for } n \geqslant 3
$$

To prove (6.4) we choose $g=\frac{1}{2}\left(M_{n}^{r+2} f+M_{n}^{r+1} f\right)$ with $r=r(p, d)$ such that (5.5) is satified with $A=2$ (which is possible for $1<p<\infty$ and any d by Corollary 5.3). Obviously,

$$
\|f-g\|_{p} \leqslant \frac{1}{2}\left(\left\|M_{n}^{r+2} f-f\right\|_{p}+\left\|M_{n}^{r+1} f-f\right\|_{p}\right) \leqslant \frac{1}{2}(2 r+3)\left\|M_{n} f-f\right\|_{p} .
$$

To estimate $(1 / n)\|P(D) g\|$, we use Theorem 4.1 and write

$$
\begin{aligned}
& \left\|M_{n}\left(M_{n}^{r+1} f\right)-M_{n}^{r+1} f-\frac{\alpha_{n}(d)}{2} P(D)\left(M_{n}^{r+2} f+M_{n}^{r+1} f\right)\right\|_{p} \\
& \leqslant\left(\frac{1}{4} \alpha_{n}(d)^{2}+\frac{1}{2(n+1)^{3}}\right)\left\|P(D)^{2} M_{n}^{r+1} f\right\|_{p}
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|P(D)^{2} M_{n}^{r+1} f\right\|_{p} \leqslant & 2 n\left\|P(D) M_{n} f\right\|_{p} \\
\leqslant & 2 n\left\|P(D)\left(\frac{1}{2} M_{n}^{r+2} f+\frac{1}{2} M_{n}^{r+1} f\right)\right\|_{p} \\
& \quad+n \cdot 2 d n\left(\left\|M_{n}^{r+1} f-f\right\|_{p}+\left\|M_{n}^{r} f-f\right\|_{p}\right) \\
\leqslant & 2 n\|P(D) g\|_{p}+n^{2} 2 d(2 r+1)\left\|M_{n} f-f\right\|_{p}
\end{aligned}
$$

and proceed as before to complete the proof.

Theorem 6.3. Under the assumptions of Theorem 6.1, we have

$$
\left\|M_{n} f\right\|_{p} \sim K(f, 1 / n)_{p}
$$

for $1 \leqslant p \leqslant \infty$ and $d=1,2,3$.

Proof. Actually, we only have to prove the equivalence for $p=1$ and $p=\infty$ in case $d=2$ and $d=3$. We choose $g=\frac{1}{2}\left(M_{n}^{4} f+M_{n}^{3} f\right)$ and use (4.1) to write

$$
\left\|M_{n} \psi-\psi-\frac{\alpha_{n}(d)}{2} P(D)\left(M_{n} \psi+\psi\right)\right\|_{P} \leqslant\left(\frac{1}{4} \alpha_{n}(d)^{2}+\frac{1}{2(n+1)^{3}}\right)\left\|P(D)^{2} \psi\right\|_{p}
$$

with $\psi=M_{n}^{3} f$. The proof now follows the same lines (see also [8]) using the fact that $n \alpha_{n}(d)$ is close to one for $n \geqslant n_{0}$ and using Theorem 3.2 instead of Theorem 3.1.

Remark 6.4. It would be desirable to prove Theorem 6.3 for all d and we believe that this result is valid. This would follow from the estimate

$$
\left\|P(D) M_{n}^{r} f\right\|_{\rho} \leqslant \varepsilon(r) n\|f\|_{p}
$$

with $\varepsilon(r)=o(1), r \rightarrow \infty$. While we believe this last estimate to be true, we are not able to prove it at present for $p=1$ and $p=\infty$.

7. Iterations

In this section we use the results of the last section to obtain theorems about equivalence to $K_{r}\left(f, t^{r}\right)$.

Theorem 7.1. For $f \in L_{p}(T), 1<p<\infty$, or $f \in L_{p}(T), \operatorname{dim} T \leqslant 3$ and $1 \leqslant p \leqslant \infty$,

$$
\begin{equation*}
K_{r}\left(f, n^{r}\right)_{p} \sim\left\|\left(M_{n}-I\right)^{r} f\right\|_{p} \tag{7.1}
\end{equation*}
$$

where $K_{r}\left(f, t^{r}\right)_{p}$ is given by (6.1) and M_{n} by (2.1).
Proof. The estimate

$$
\begin{equation*}
K_{r}\left(f, n^{-r}\right)_{p} \leqslant C(r)\left\|\left(M_{n}-I\right)^{r} f\right\|_{p} \tag{7.2}
\end{equation*}
$$

follows from the estimate achieved in Theorems 6.1 and 6.3 and Theorem 10.4 of [8] using the estimate

$$
\begin{equation*}
\frac{1}{n}\left\|P(D)\left(M_{n}^{\prime} f\right)\right\|_{p} \leqslant B\left\|f-M_{n} f\right\|_{p} \tag{7.3}
\end{equation*}
$$

for some l. We proved for some r

$$
\frac{1}{2 n}\left\|P(D)\left(M_{n}^{r+1} f+M_{n}^{r} f\right)\right\|_{p} \leqslant B_{1}\left\|f-M_{n} f\right\|_{p}
$$

which implies (7.3) (Equation (7.3) could have been proved directly.) The estimate

$$
\begin{equation*}
\left\|\left(M_{n}-I\right)^{r} f\right\|_{p} \leqslant B(r) K_{r}\left(f, n^{-r}\right)_{p} \tag{7.4}
\end{equation*}
$$

was shown when proving Theorem 4.1 of [2] and is the easier direction in any case.

We can also prove the following result which is of interest only for $p=1$ and $p=\infty$ when $d>3$, as otherwise it is just a special case of Theorem 7.1.

Theorem 7.2. For $f \in L_{p}(T), 1 \leqslant p \leqslant \infty$, we have

$$
\begin{equation*}
K_{r}\left(f, n^{-r}\right)_{p} \sim \max _{0 \leqslant i \leqslant r}\left\|\left(M_{n}-I\right)^{r-i}\left(M_{n d}-I\right)^{i} f\right\|_{p}, \quad n \geqslant n_{0} \tag{7.5}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{r}\left(f, n^{-r}\right)_{p} \sim\left\|\left(M_{n}-I\right)^{r} f\right\|_{p}+\left\|\left(M_{n m}-I\right)^{r} f\right\|_{p}, \quad n \geqslant n_{0} \tag{7.6}
\end{equation*}
$$

for some $m=m(r)$.
Remark 7.3. The advantage of (7.5) is that it is easier to prove (and d may be smaller than m). The advantage of (7.6) is that it yields two terms and hence the iteration is still a strong converse inequality of type B in the terminology of [8]. Moreover, $M_{n d}$ and $M_{n m}$ in (7.5) and (7.6) can be replaced by M_{l}, with $n d \leqslant l \leqslant n A$ and $n m \leqslant l \leqslant n A$, respectively.

Proof of Theorem 7.2. The direct inequalities in (7.5) and (7.6), that is,

$$
\left\|\left(M_{n}-I\right)^{r-i}\left(M_{n d}-I\right)^{i} f\right\|_{p} \leqslant C K_{r}\left(f, n^{r}\right)_{p}, \quad 0 \leqslant i \leqslant r
$$

and

$$
\left\|\left(M_{s n}-I\right)^{r} f\right\|_{p} \leqslant C K_{r}\left(f, n^{-r}\right)_{p}, \quad s=1, m,
$$

follows from earlier results (see for instance the proof of Theorem 4.1 in [2]). For the proof of (7.5) we have to show

$$
\begin{equation*}
K_{r}\left(f, n^{-r}\right)_{p} \leqslant B \max _{0 \leqslant i \leqslant r}\left\|\left(M_{n}-I\right)^{r-i}\left(M_{n d}-I\right)^{i} f\right\|_{p} \tag{7.7}
\end{equation*}
$$

To obtain (7.7) we choose g as

$$
\begin{align*}
& g \equiv O_{n . r} f=\sum_{s=1}^{r}(-1)^{s-1}\binom{r}{s} O_{n}^{r r} f, \tag{7.8}\\
& O_{n} f \equiv \frac{1}{2}\left(M_{n d} M_{n}^{2}+M_{n}^{2}\right) f .
\end{align*}
$$

We estimate $\|f-g\|_{\rho}$ by

$$
\begin{aligned}
\|f-g\|_{p} & =\left\|f-O_{n, r} f\right\|_{\rho}=\left\|\left(O_{n}^{r}-I\right)^{r} f\right\|_{\rho} \leqslant r^{r}\left\|\left(O_{n}-I\right)^{r} f\right\|_{p} \\
& \leqslant A r^{r} \max _{0 \leqslant i \leqslant r}\left\|\left(M_{n}-I\right)^{r \cdots i}\left(M_{n d}-I\right)^{i}\right\|_{p} .
\end{aligned}
$$

To complete the proof of (7.7) we estimate $n^{-r}\left\|P(D)^{r} g\right\|_{p}$ by

$$
\begin{aligned}
n^{-r}\left\|P(D)^{r} g\right\|_{\rho}= & n^{-r}\left\|P(D)^{r} O_{n, r} f\right\|_{\rho} \leqslant 2^{r} n^{-r} \max _{1 \leqslant s \leqslant r}\left\|P(D)^{r} O_{n}^{r s} f\right\|_{p} \\
\leqslant & 2^{r} n^{-r}\left\|P(D)^{r} O_{n}^{r} f\right\|_{p} \\
\leqslant & A n^{-r+1}\left(\left\|P(D)^{r}{ }^{1} O_{n}^{r-1}\left(M_{n}-I\right) f\right\|_{p}\right. \\
& \left.+\left\|P(D)^{r-1} O_{n}^{r-1}\left(M_{n d}-I\right) f\right\|_{\rho}\right) \\
\leqslant & \cdots \leqslant B \max _{0 \leqslant i \leqslant r}\left\|\left(M_{n}-I\right)^{r-i}\left(M_{n d}-I\right)^{i} f\right\|_{p}
\end{aligned}
$$

To prove (7.6) it remains to show that for some integer m we have

$$
\begin{equation*}
K_{r}\left(f, n^{-r}\right)_{p} \leqslant B\left(\left\|\left(M_{n}-I\right)^{r} f\right\|_{p}+\left\|\left(M_{n m}-I\right)^{r} f\right\|_{p}\right) . \tag{7.9}
\end{equation*}
$$

We postpone the choice of m and choose g as

$$
\begin{equation*}
g=\sum_{s=1}^{r}(-1)^{s+1}\binom{r}{s} M_{n}^{(r+1) s} f \tag{7.10}
\end{equation*}
$$

The estimate of $\|f-g\|_{p}$ is given by

$$
\|f-g\|_{p}=\left\|\left(M_{n}^{r+1}-I\right)^{r} f\right\|_{p} \leqslant(r+1)^{r}\left\|\left(M_{n}-I\right)^{r} f\right\|_{p} .
$$

To estimate $n^{-r}\left\|P(D)^{r} g\right\|_{p}$ we write

$$
\begin{aligned}
n^{r}\left\|P(D)^{r} g\right\|_{p} & \leqslant n^{-r} 2^{r} \sup _{1 \leqslant s \leqslant r}\left\|P(D)^{r} M_{n}^{(r+1) s} f\right\|_{p} \\
& \leqslant n^{-r} 2^{r}\left\|P(D)^{r} M_{n}^{r+1} f\right\|_{p}
\end{aligned}
$$

and hence it is sufficient to estimate $n^{r}\left\|P(D)^{r} M_{n}^{r+1} f\right\|_{p}$. Using Theorem 4.3 with $m n$ replacing n, and m chosen so that $2 r d 2^{r} \leqslant m$, we have

$$
\begin{aligned}
& \left\|\left(M_{n m}-I\right)^{r} M_{n}^{r+1} f-\alpha_{n m}(d)^{r} P(D)^{r} M_{n}^{r+1} f\right\|_{p} \\
& \leqslant
\end{aligned} \begin{aligned}
2(n m)^{r+1}
\end{aligned} P(D)^{r+1} M_{n}^{r+1} f \|_{p} \quad \begin{aligned}
& \frac{r d}{m} \frac{1}{(m n)^{r}}\left\|P(D)^{r} M_{n}^{r} f\right\|_{p} \\
\leqslant & \frac{r d}{m} \frac{1}{(m n)^{r}}\left\|P(D)^{r} M_{n}^{r}\left(M_{n}-I\right)^{r} f\right\|_{p} \\
& +\frac{r d}{m} \frac{1}{(m n)^{r}} \sum_{s=1}^{r}\binom{r}{s}\left\|P(D)^{r} M_{n}^{r+v} f\right\|_{p} \\
\leqslant & \frac{r d}{m} \frac{2^{r}}{(m n)^{r}}\left\|P(D)^{r} M_{n}^{r+1} f\right\|_{p}+\frac{r}{2}\left(\frac{2 d}{m}\right)^{r+1}\left\|\left(M_{n}-I\right)^{r} f\right\|_{p} .
\end{aligned}
$$

Since $r d 2^{r} / m \leqslant 1 / 2$, we complete the proof writing

$$
\begin{aligned}
\alpha_{n m}(d)^{r}\left\|P(D)^{r} M_{n}^{r+1} f\right\|_{p} \leqslant & \frac{1}{2} \frac{1}{(m n)^{r}}\left\|P(D)^{r} M_{n}^{r+1} f\right\|_{p} \\
& +\left\|\left(M_{n m}-I\right)^{r} f\right\|_{p}+\frac{r}{2}\left(\frac{2 d}{m}\right)^{r+1}\left\|\left(M_{n}-I\right)^{r} f\right\|_{p}
\end{aligned}
$$

and recalling $\alpha_{n m}(d)^{r}=(1 / n m)^{r}+O\left(n^{-r-1}\right)$.

References

1. H. Berens and Y. Xu, On Bernstein-Durrmeyer polynomials with Jacobi weights, in "Approximation Theory and Functional Analysis" (C. K. Chui, Ed.), pp. 25-46, Academic Press, San Diego, 1990.
2. W. Chen and Z. Ditzian, Multivariate Durrmeyer-Bernstein operator, in "Proceedings of Conference in Honor of A. Jakimovski," pp. 109-119, Israel Mathematical Conference Proceedings, Vol. 4, Weizmann, Jerusalem, 1991.
3. M. M. Derriennic, Sur l'approximation de fonctions intégrables sur $[0,1]$ par des polynômes de Bernstein modifies, J. Approx. Theory 31 (1981), 325-343.
4. M. M. Derriennic, On multivariate approximation by Bernstein-type polynomials, J. Approx. Theory 45 (1985), 155-166.
5. M. M. Derriennic, Polynômes de Bernstein modifies sur un simplexe T de R^{l} problems des moments, in "Polynômes Orthogonaux et applications. Bar le Duc 1984," pp. 296-301, Lecture Notes in Mathematics, Vol. 1171, Springer-Verlag. New York Berlin, 1984.
6. M. M. Derrinnic, Linear combinations of derivatives of Bernstein-type polynomials on a simplex, to appear.
7. Z. Ditzian and K. Ivanov, Bernstein-type operators and their derivatives, J. Approx. Theory 56 (1989), 72-90.
8. Z. Ditzian and K. Ivanov, Strong converse inequality, J. Analyse Math., to appear.
9. Z. Ditzian and V. Totik, "Moduli of Smoothness," Springer-Verlag, New York/Berlin, 1987.
10. J. L. Durrmeyer, "Une formule d'inversion de la transformée de Laplace: Applications à la théorie des moments," Thèse de 3e cycle. Faculté des Sciences de l'Université de Paris, 1967.

[^0]: * Supported by NSERC A-4816 of Canada.
 ${ }^{+}$Supported by Contract No. 50 with the committee for Science. Bulgaria.

