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An equivalence relation between the rate of approximation of Bernstein­
Durrmeyer polynomials and an appropriate K-functional is established. The results
are stronger than those known for Bernstein polynomials. The advantages of
Bernstein-Durrmeyer polynomials, i.e., self-adjointness, communativity, and simple
expansion by orthogonal polynomials, are used extensively. i' 1993 Academic

Press. Inc.

l. INTRODUCTION

The Bernstein-Durrmeyer operator (see [10, 3]) is given by

M n(f,x)=(n+l) f Pn.k(X)fp".k(y)f(y)dy, (1.1)
k ~O 0

where
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We prove a strong converse inequality of type A, in the terminology of [8],
that is, we show

(1.2)

for 1~ p ~ 00 with cp(X)2 = x( 1 - x). For 1 < p < 00, we prove an analogue
of (1.2) for the multivariate Bernstein-Durrmeyer operator introduced by
Derriennic [4]. In the cases p = 1 or p = CfJ and the higher dimensional
analogue of (1.1), we prove a somewhat weaker result (that is, a strong
converse inequality of type B in the terminology of [8]). Several recent
articles [1,2,6] proved (among other results) converse inequalities for
these operators that are obviously weaker than those in the present paper.

2. NOTATIONS AND SURVEY OF THE PROOF

The Multivariate Bernstein-Durrmeyer operator was introduced by
Derriennic [4] as

(n+d)! f
Mn(f, x) = , L. P", il(x) P", iJ(u) flu) du,

n. (fii"IE T T

(2,1)

where x, uERd (x=(x1" ..,Xd»), p=(k" ...,kd) with k; integers, and
T= {u: 0 ~ Ui , L:.~~ I Ui~ I}. The polynomial P", ii(U) is given by

where {Jl=k1!···kdl, UiJ=U~""U~d (u7'=1 ifki=ui=O), lul=L:.~=lU;

and IPI = L~~, k,.
Many properties were proven about the operators Mnfwhich are quoted

as we use them. We define, following Derriennic [6],

d a ° (a 0) (a 0)P(D)= L. -x;(I-lxl)-+ L --- XiX) -.--
i~' ex; ex, i<) OX i aX) OX i ax)

and recall that for f E e2
( T), it was proved in [5] that

n{Mn(f, x)- f(x)} -+ P(D)f(x).

(2.3 )

(2.4 )

The operator P(D) given by (2.3) and introduced in [6] may take other
forms, as can be seen in [4, 2].
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The main result of our paper is the equivalence
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which is proved in Theorem 6.3 for all d when 1< p < 00 and for d = 1, 2,
and 3 when p = 1 and p = 00. For p = 1 and p = 00 and d> 3, a weaker
result than (2.5) is valid. The proof follows from a Bernstein-type
inequality

(2.6 )

(Theorem 3.2), and an improved Voronovskaja-type result

(2.7)

(Theorem 4.1). It is the interplay between the exact constants in (2.6) and
(2.7) that implies (2.5) for d= 1,2, and 3, and the estimate (2.6) depends
on d (IXn ( d) is asymptotically independent of d). For 1< p < 00 we use the
L 2 estimate

IIP(D) M~/112 ~ fill/112

(Theorem 5.1) and the Riesz-Thorin interpolation theorem to obtain

(2.8)

IIP(D) M~Jllp < e(r) nil/lip, 1 < p < 00, (2.9)

with e(r)=o(l) as r-+ 00. The inequality (2.9) together with (2.7) is suf­
ficient to prove (2.5) for 1 < P < 'x; and all dimensions d. We conjecture
that (2.9) and hence (2.5) is valid for p = 1 and p = 00 in all dimensions
(see Remark 6.4).

We note that for d = I, when p = 1 or p = 00 we cannot replace the
K-functional on the right hand side of (2.5) with w~(f, t)p (where
lp2 = x(1 - x)). This follows since the K-functional on the right hand side of
(1.2) and w~(f, t)p are not equivalent for p = 1 and p = 00 while (1.2) holds.
For 1 < P < C/J the above expressions are equivalent. Hence, even for higher
dimensions an equivalence result with an expression generalizing w~ will
falter for p = 1 and p = if). We trust that an equivalence of sorts will be
proved for 1 < P <x;, but that is beyond the scope of this paper and our
knowledge. As an equivalence between the K-functional above and
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(J]~(f, t)p (see [9, Chap. 12]) is not true for all p and as the rate of
convergence is equivalent to the above K-functional, it is that K-functional
that is the appropriate measure for this paper.

3. ESTIMATE OF IIP(D) Mnfll p

It follows from Derriennic's research [6], detailed only for d = I and
d= 2, that

IIP(D)' MJll p ~ Cn r Ilfli p •

We need for r = 1 the following better estimate on the constant C.

(3.1 )

THEOREM 3.1. For fE Lp(T), where T is the d-dimensional simplex given
in Section 2, and for P(D) given by (2.3), we have

IIP(D) MJll p ~ 2 dn Ilfll p . (3.2)

Proof First we show that it is sufficient to prove (3.2) for p = 00 (or
p= 1). Assume (3.2) for p= 00. We take gEC2(T) andfEL](T) and then
use [2, Lemma 2.5]

(3.3 )

We recall from [4] the self-adjointness of Mnand P(D) with respect to the
scalar product <J, g) = h f(u) g(u) du to obtain

I<P(D) MnJ, g)1 = I<J, P(D) Mng)i ~ IlfIlLl(T) IlP(D) Mnglk"m

~ 2 dn Ilfll Lim II gil L.,,(T)· (3.4)

As (3.4) is valid for all gEC2(T), we have (3.2) for p= 1. The inequality
(3.2) for p = 00 and p = 1 implies now (3.2) for 1 < P < 00 via the
Riesz-Thorin interpolation theorem.

We observe that

a
x;(I-lxl) ax; Pn.p(x)=(k;(l-lxl)-(n-IPI)x;)Pn.p(X), (3.5)

and hence

a a
-;- x;(1 - Ixl )-;- Pn. p(x)
UX j UX;

=(k,(l-lxl)-(n-IPI)xYp (x)-(n-IPI+k)P () (3.6)
X

j
( 1_ Ixl) n. p,n.p X .
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Similarly,
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Recalling Mn(l, x) = 1, we have

0= P(D) Mn(l, x)

= L ({f (k;(l-lxl)-_(n-lfJl)xY
(Pin)e T ;~ I x;(l Ixl)

+ L (k;Xj-kjXY}_nd)Pn,p(X)
i<j X,X,

= I (lIl,p(x)-nd) Pn,(l(X)'
(Pin)e T

which implies

L In,p(x) Pn,p(x)=nd L P n.(l(X) = nd.
(p/n)e T ((l/n)E T

We now estimate

and use In, p(x) ~ 0 to obtain

IP(D) Mn(f, x)1 ~ I (In, p(x) + nd) P n, /I(x) II!II Lx<Tl

l(l/Il}e T

We are also able to prove the following useful estimate,

THEOREM 3.2. Under the assumptions of Theorem 3.1, we have

(3.8 )

(3.9)

(3.10)

Proof Following the proof of Theorem 3.1, we only have to consider
p = ::IJ. We can write
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We show
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IP(D) M;,(f, x)1 = IMIIP(D) MII(f, x)1

(
(n+d)!)2

~ n! (Y/~ETPII.1,(X)

X L If PII.y(U) P(D) PII.p(U)dU/
({l/II)E T T

X f PII. /I(V) 1/(v)1 dv
T

(n +d)!
~ , II/II Lx(T) L PII. y(x)

n. (;'/111 E T

X 2: If PII. .,,(u) P(D) PII. p(U) dU/.
({lill)E T T

(n+d)! L If PII.)U)P(D)PII'fI(U)dUI~nd, (3.11)
n! (i1/IIIET T

which implies (3.10) for p = (f) and hence for I ~ p ~ (f). To prove (3.11),
we write

(n+d)! If IJ II ,;.= , L PII,y(u) P(D) PII.P(U) du
n. (i1/IIIET 7

.:.--(n_+_,d.:.--)! L IL f (L i. j (D) P II. y(u) )(L,. j (D) P II. p(u)) dul,
n. Hi/IIIET ,~, T

where

L i, j (D) = J'-u,-(1---1u-I) ~a
UU i

and

for i -# j. (3.12 )

The straightforward computation of L i , j (D) PII. q( u) (where '1 = [J or '1 = y)
leads now to

JII'i,~(n:!d)!

X L f {£ Ik,(l-lul)-(n-lfJI)uilll j(I-lul)-(n-IYI)uJI

({lill)E T T i~ I u/(I -lui)

+ ". Ikiuj - kjU,llliUj-ljUi'} P () P () d
L, II.)' U II, {l U U.
j<j uiu,
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Recalling I".n(u) (with '1=P and '1=/') given in (3.8), we use the Cauchy­
Schwartz inequality to obtain

(n+d)! "f 1/2 1'2J". .,,~ n' L. In. {3(U) , I".y(u) / Pn.)u)P".Ii(u)du
• ({3/")E T T

{
(n+d)! }1!2

~ I I f I".Ii(u)P".y(u)P".Ii(u)du
n. (1i/"IE T T

{
(n+d)! }1/2

x , ,L f I". .,,(u) Pn. .,(u) Pn.p(u) du
n. ({I!")E T T

== J:.;, x J:'~.

The estimate J:, 'j ~ (nd)I/2 follows from

LIn. {3(u) p".p(u) = nd,
(li/n)E T

which follows from (3.8). To estimate J:.;', we write, using (3.5),

f (lj( 1 - lui) - (n - It'l) uY P () d = f (/( 1_ I I) _ ( - I' I) .)
(1 I I) ",)' u U I U nyu,

T U i - U T

o
xauP",,.(u)du,

n!
(n+d)! (n-I,'I +1;)

and

f (ljuj-ljuY n! 1
P",.,,(u)du= d ,(lj+ j),

T uju, (n + ).

which implies J~,~, ~ (nd)I/2. I

4. VORONOVSKAJA-TYPE ESTIMATES

Derriennic [5] proved the Voronovskaja-type estimate (2.4), For the
converse inequality of the present paper, we need the following stronger
result.

THEOREM 4.1. Suppose fEC 4 (T), M"f is given by (2.1) and P(D) is
given by (2.3). Then we have for n> 1

640'751,,1
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(4.1 )

Proof Using Corollary 2.4 of [2J,

ex· 1
Mnf - f= k~~+ 1 k(k+d) P(D) Md,

we write

I(n) == IIMnf - f - rJ.n~d)P(D)(f + Mnf)11

1 II 'l) 1="2 k~~+1 k(k+d) P(D)(Md - f)

:xc 1 II+ k~~+l k(k+d) P(D)(Md -Mnf)

=~II f 1 f 1 P(D)2Mj
2 k~n+lk(k+d)j~k+lj(j+d) I

:xc 1 kill- L L P(DfMJ
k~n+ 1 k(k + d)j~n+ 1 j(j + d)

1 II x p(D)2 MJ j- 1 1

="2 '~~+2 j(j+d) k~~+l k(k+d)

x P( D)2 MJ :xc 1 II
- j~~+ I j(j + d) k~j k(k + d)

1 co 1 I j-I 1
:%"2 sup IIP(Df MJII . L: .(.+ d) L k(k + d)

I l~n+lJJ k=n+l
co 1 I

k~j k(k + d)

(with the understanding LZ=n+I···=O). Using Lemma2.5 of [2J, we
have for f E C4

( T)
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and hence,

We now have

l X 1
I(n)~21IP(D)2fll . I '( '+d) l~n(d)-2aj_l(d)1

/=n+l}}

==! IIP(Dffll J(n).2 .

To estimate J(n), we define Jo by

J0 = max {J: 2aj _ I(d) - a,,(d) > 0 },

and as rx)d) is a decreasing sequence in J, we have

33

io t X 1
J(n) = I '(' d) (2ai -t(d) - a,,(d))+ I '(' + d) (a,,(d) - 2Cij _ 1(d))

i~"+I}}+ j~IO+I}}

==J1(n)+J2(n).

To estimate J1(n), we write

;0

J.(n) = I (CXi_l(d) - cxj(d))(cxi _ ,(d) + cxj(d))
j=,,+1

as the definition ofJo implies a,,(d)-a,o(d}~ !a,,(d} and

for n ~ 1.

To estimate J 2(n), we write

'x

J 2(n) ~ cx,,(d) aio(d) - I (a; ,(d) - ~i(d)}(ai- l(d} + cxj(d))
i= io+ I
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Combining the estimates for J](n) and J 2(n), and asjo~2n+ 1, we have

1 2 2/3
J(n)~2cxn(d) + (n+ 1)3 +a/o(d)(aAd)-21X;o(d))

1 2 2/3
~2IXn(d) + (n+ 1)3+2IXjo(d)(lX/o-I(d)-IX/o(d))

1 2 2/3 1 I 2 I
~2IXn(d) + (n+ 1)3+ 2 (2n+2)22n+ 1~2IXn(d) + (n+ 1)3'

which combined with the estimated of I(n) concludes the proof. I

Remark 4.2. For most purposes, the slightly easier to prove estimate

IIMnf - f - IXn(d) P(D) flip ~ 2~2 IIP(D)2 flip (4.2)

is sufficient. In some cases, however, (4.1) yields results which are
qualitatively better.

In one result (Theorem 7.2), we need the following extension of (4.2).

THEOREM 4.3. Suppose fEC 2r
+

2(T) and M n, P(D), T, and d are as
given in Section 2. Then

Proof We first observe
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We prove (4.3) by induction. We assume (4.3) for r = I and write
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Since we have

and since the induction hypothesis for 1= 1 implies

the result follows. I

5. ESTIMATE OF IIP(D) M~f112 AND ITS CONSEQUENCE

In this section, we will give an estimate of IIP(D) Mnfll L2(T) and of
II P(D) M ~fll L2(T) which will prove useful also for other L p( T).

THEOREM 5.1. Suppose fELAT), Mnf, T and P(D) are as defined in
Section 2. Then we have r = 1, 2, ...,

(5.1 )

For the proof we need the following computational lemma.

LEMMA 5.2. For An. k given by

A _ (n+d)!n!
n,k- (n+d+k)! (n-k)!'

we have

k(k + d) I.;" k:::;; n/v0-,

(5.2 )

(5.3 )

Proof Since 0:::;; I. n. k :::;; 1, (5.3) follows immediately when k(k + d) :::;;

n/.j;. To prove (5.3) for k satisfying k(k+d»nl.j;, we estimate }.~.k
using
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" ( (n+d)! n! )J (k n-k+i)J k ( d+k)J
k~,k= (n+d+k)!(n-k)! = ,I]l n + d + i =DI 1- n+d+i

(
d + k )kJ 1 1

~ 1- n+d+k = (1 +d:krJ~ 1+k(k+d)jn- I
'

For j = 1, we have

, n n
An,k ~ n + k(k+ d) ~ k(k+ d)'

For k(k + d) ':;3 n/";; and j = r - 1, we have

r-I 1 1 1
A.n,k ~ ~ ~-,

l+k(k+d)(r-l)n- 1 1+(r-1)/";; .,;;

and hence,

r k(k+d) n n
k(k+d)A.nk~ r. ~ c I

, ....;r k(k+d) ....;r

Proof of Theorem 5.1. The eigenspaces of the self adjoint operators
P(D)fand Mnfare the same (see B, (2.5) of [2], and Lemma 2.2 of [2];
see also [4]) and f can be expanded by

where

and P(D)Pd= -k(k+d)Pd, (5.4)

with An, k given by (5.2) for k ~ nand A. n, k = 0, k > n. We now have, using
Bessel inequality and Parseval formula,

IIP(D) M~fll L21T) = II ±k(k + dP~, k Pdll
k~ I L2(T)

= Ct (k(k + d)A.~, d 2
II PdIlL(T)Y

I

2

~ m~x (k(k + d)A~,k) C~I II Pdlli2(T)Y
/
2

The following estimate for IIP(D) Mnfll p can now be derived.
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COROLLARY 5.3. For 1 < P < 00 and IE L p ( T) and any A > 0, there
exists r, r = rCA, p, d), such that

IIP(D) M~,fll Lp(T) ~ An IIII1 LplT)'

Proof We recall that Theorem 3.1 implies

(5.5 )

(5.6)

We now use the Riesz-Thorin interpolation theorem with (5.6) for p = ex;
(or p = 1) and (5.1) to obtain (5.5) for 2 ~ p < 00 (or 1 <p ~ 2). I

6. STRONG CONVERSE INEQUALITIES

In this section, we prove converse inequalities for the Bernstein­
Durrmeyer operator. We duplicate some arguments from [8] for the sake
of completeness. We define the K-functional

We note that in this section we are dealing with r = I. We recalJ that

AII-BII iff C-1A II ~ BII ~ CAli' (6.2)

The converse result is given in the following theorem.

THEOREM 6.1. Suppose P(D), M,,f and T are those given in Section 2
and Kt(f, t)p == K(f, t)p is given by (6.1). Then we have

and

(6.3)

1< P < C/J. (6.4 )

Remark 6.2. In the terminology of [8] the results (6.3) and (6.4) are
strong converse inequalities of type B and A, respectively. Actually, for
d = I, (6.3) yields

for 1 ~ P~ ex; ,

and this type of equivalence is shown for d= 2 and d= 3 as well (see
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Theorem 6.3). For d> I, (6.3) has an advantage over (6.4) only for p = 1
and p = 00.

Proof It was shown in (3.2) of [2] that

Ilf - Mnfll p~ 2K(f, n -1 )p,

and hence, we need only estimate K(f, l/n)p by IIMnf - flip + II Mndf - flip
or by IIMnf - fll to prove (6.3) and (6.4), respectively. (Of course the
conditions are not the same.) We do so by constructing gE C2(T) such that
both Ilf - gil and (lin) IIP(D) gil will satisfy the appropriate estimate. As
the K-functional is given as an infimum on all g E C2

( T), we will have our
result. To prove (6.3), we choose

Using the commutativity relation MnMm= MmMn, we have

Ilf - ~MndM~f - ~M~fllp ~ ~ IIMndM~f - flip + ~ IIM~f - flip

~ ~ II Mndf - flip + 2 IIMnf - flip'

To estimate P(D) g, we use (4.1) but with nd rather than n, that is, we
write

(6.5 )

with IjJ =M~f We can write using Theorem 3.1

IIP(D)2 M~fllp ~ 2nd IIP(D) Mnfll p

~ 2nd IIP(D)(~(MndM~f+ M ~f))llp

+ nd[IIP(D)(MdnM~f - Mnf)ll p

+ IIP(D)(Mn-I) Mnfll p]

~ 2nd IIP(D) gllp + (2nd)2 IIMnf - flip

+ 2n2d 2
11 Mdnf - flip.

(Recall P(D)(MdnM~f-Mnf)=P(D) Mn(Mnf - f)+P(D) M~(Mdnf-f)·)
We now complete the proof using (6.5) with l/J = M~f and the above to
write
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d 2f 2 (1 2 1)~dn( )IIP(D)gllp~IIMdnMn -MJll p+ 4~nd(d) +2(dn+I)3

x IIP(D)2 M~fllp

~2 IIMdJ - fll p + 2 IIMJ - fll p + G~dn(d)+ (dn ~ If)

x IIP(D) gilI"

Since Ild(n + I) "':;~d,,(d)~ I/(dn + I), we have

for n~ 3.

To prove (6.4) we chooseg=hM:+2f+M:+~f) with r=r(p,d) such
that (5.5) is satified with A = 2 (which is possible for 1< p < 00 and any d
by Corollary 5.3). Obviously,

Ilf - gill' ~ HIIM~+ 2f - flip + IIM~+ tr - flip) ~ t(2r + 3) 11M,,! - fll".

To estimate (lIn) IIP(D) gil, we use Theorem 4.1 and write

IIMn(M~+ If) - M;,+ If - ~,,~d) P(D)(M~+ Y+ M~+ If)t

~ (~~ (d)2 + I ) IIP(D)2 M'+ 1'111
-- 4 n 2(n + 1)3 ""

and

IIP(D)2 M~+ Ifll" ~ 2n IIP(D) M"!II"

~ 2n IIP(D)(tM~+ 2f + tM~+ 1f)11"

+ n· 2 dn( 11M;,+ If - flip + IIM:f - flip)

~ 2n IIP(D) gil" + n22 d(2r + I) 11M,,! - fll"

and proceed as before to complete the proof. I

THEOREM 6.3. Under the assumptions of Theorem 6.1, we have

II M"!II " - K(f, lin)"

for I ~ p ~ 00 and d = t, 2, 3.
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Proof Actually, we only have to prove the equivalence for p = 1 and
p = 00 in case d= 2 and d= 3. We choose g = !(M~f+ M~f) and use (4.1)
to write

IIMnI/J-I/J- CXn;d) P(D)(MnI/J+I/Jt ~GCXn(d)2+2(n:1)3) II P(D)2I/Jll p

with I/J = M ~f The proof now follows the same lines (see also [8]) using
the fact that ncxn(d) is close to one for n ~ no and using Theorem 3.2 instead
of Theorem 3.1. I

Remark 604. It would be desirable to prove Theorem 6.3 for all d and
we believe that this result is valid. This would follow from the estimate

IIP(D) M~fllp ~ e(r) n Ilfll p

with e(r) = 0(1), r -+ 00. While we believe this last estimate to be true, we
are not able to prove it at present for p = 1 and p =00.

7. ITERATIONS

In this section we use the results of the last section to obtain theorems
about equivalence to KAf, t r

).

THEOREM 7.1. For fELp(T), 1 <P<oo, or fELp(T), dim T~3 and
1 ~ P ~ 00,

(7.1 )

where KAf, t')p is given by (6.1) and M n by (2.1).

Proof The estimate

(7.2)

follows from the estimate achieved in Theorems 6.1 and 6.3 and
Theorem lOA of [8] using the estimate

! IIP(D)(M~f)lIp ~ B Ilf - M,Jll pn

for some l. We proved for some r

(7.3 )
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which implies (7.3) (Equation (7.3) could have been proved directly.) The
estimate

(7.4 )

was shown when proving Theorem 4.1 of [2] and is the easier direction in
any case. I

We can also prove the following result which is of interest only for p = I
and p = CIJ when d> 3, as otherwise it is just a special case of Theorem 7.1.

THEOREM 7.2. For fE Lp(T), I ~ P ~ 00, we have

and

n;:, no (7.6)

for some m = m(r).

Remark 7.3. The advantage of (7.5) is that it is easier to prove (and d
may be smaller than m). The advantage of (7.6) is that it yields two terms
and hence the iteration is still a strong converse inequality of type B in the
terminology of [8]. Moreover, M"d and M"m in (7.5) and (7.6) can be
replaced by M I , with nd~ / ~ nA and nm ~ I ~ nA, respectively.

Proof of Theorem 7.2. The direct inequalities in (7.5) and (7.6), that is,

o~ i~ r,

and
s= I,m,

follows from earlier results (see for instance the proof of Theorem 4.1 III

[2]). For the proof of (7.5) we have to show

Kr(f,n-r)p~B max II(M,,-l)r-i(Mlld -/),fII p. (7.7)
O~j.:E;r

To obtain (7.7) we choose gas

g = 0 f= {. (-I )., I (r) O"'"r,
- II. r L- 11. ,

.I~I S

O,.!= 1(M"dM~ + M~)f

We estimate IIf - gil" by

Ilf - gill' = Ilf - Oil, Jill' = 11(0;,- If fill' ~ rr 11(011 _I)r fll"

~ Arr max II(M II - If I (M"d- /)'11".
O~i~,.

(7.8)
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To complete the proof of (7.7) we estimate n -r IIP(D)' gllp by

n- r IIP(D)' gllp=n- r IIP(D)' 0",Jllp~2rn-r max IIP(D)' O~'fllp
l~s~r

~2rn-r IIP(D)' 0Jll p

~An-r+1 (IIP(D)' 10:-I(M,,-l)fll p

+ IIP(D)'-I 0;, I(M"d-l)fll p)

~ ... ~ B max II(M" _I)r-; (M"d-I)i flip'
O~;~r

To prove (7.6) it remains to show that for some integer m we have

We postpone the choice of m and choose g as

g=,t (_1)'+1 C)M~:+I):r

The estimate of Ilf - gllp is given by

Ilf- gllp = II(M:+ I _I)r flip ~ (r + 1)' II(Mn _I)r flip'

To estimate n -r IIP(D)' gllp we write

n r IIP(D)' gllp ~ n- r2r sup IIP(D)' M~+ l>lllp
I~s~r

(7.10)

~n -'1' IIP(D)' M:+ Ifllp,

and hence it is sufficient to estimate n r IIP(D)' M:+ 'fll p . Using
Theorem 4.3 with mn replacing n, and m chosen so that 2r d2 r

~ m, we have

II(M"m -I)' M:+ If - !Y. llm(d)' P(D)' M:+ Ifll p

,:::: r IIP(D)r+' Mr+'fll
""2(nm)'+' "p

r d 1
~--()r IIP(D)' M;,fllp

m mn

~ r d _(I )r IIP(D)' M:(Mn _I)r flip
m mn

rd I r (r)+--." - IIP(D)' Mr+ln
m (mn )"::-1 s n p

rd 2r
r(2~r+1

~--;;; (mn)' IIP(D)' M:+ 'fll p+ 2 m) II(MIl-/)' flip.
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Since r d 2'1m ~ 1/2, we complete the proof writing

43

and recalling iXnm(d)' = (llnm)' + O(n- r- 1
). I
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